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Abstract

Flush Air-Data Sensing (FADS) systems use an array of sur-
face pressure measurements to infer the speed, position, and
orientation of a vehicle in flight. The non-intrusive nature of
such systems make them especially useful for hypersonic ve-
hicles. Determining the functional relationship between mea-
sured surface pressure and the airdata of interest (e.g. Mach
number, angle-of-attack, etc.) is the first step in implementing
a FADS system. In this work, these functional relationships are
developed by fitting surfaces/curves to a set of numerical simu-
lations. In the absence of ground or flight test data, the resulting
FADS algorithm is tested with a second set of numerical simu-
lations. The largest error in predicted Mach number is±0.2, in
angle-of-attack is±0.05◦, in angle-of-sideslip is±0.15◦, and in
freestream pressures is±20 Pa.

Introduction

Scramjet powered vehicles are expected to be an integral part of
future access-to-space systems [1, 2]. Flight experiments are an
important component in the continuing development of scramjet
technologies. These flight experiments can be controlled flights,
such as Hyper-X [3], or uncontrolled flights, such as HyShot II
[4]. In the former case, accurate sensing of the vehicle state is
essential to the success of the flight control algorithms. And in
both cases, characterising the inflow to the scramjet is essential
to successfully analysing engine performance.

For a hypersonic vehicle, measurement of vehicle speed, posi-
tion, and orientation must be accomplished with non-intrusive
sensors [5]. These often include Inertial Measurement Units
(IMU), Global Positioning Systems (GPS), and Flush Airdata
Sensing (FADS) systems. FADS systems can potentially pro-
vide real-time vehicle orientation information that is more ac-
curate than that from a typical IMU [6] and also provide post-
flight Mach number and altitude estimates to compliment an
IMU and/or GPS.

FADS systems use an array of surface pressure measurements to
infer important airdata parameters. In particular, in the current
work we consider a system capable of predicting Mach number
(M), freestream pressure (P∞), angle-of-attack (α), and angle-
of-sideslip (β). From these four parameters one can calculate
all other airdata parameters of interest. In this paper, a set of
numerical simulations is used to develop the necessary relation-
ships between the four relevant airdata parameters and the sur-
face pressure measured at discrete locations on the vehicle.

FADS Algorithm

The basic FADS algorithm is summarised quite succinctly by
equation 1

Pi = Fi(M,P∞,α,β) (1)

wherePi is the ith surface pressure measurement andFi is a
function relating the ith surface pressure measurement toM,
P∞, α, andβ. In general, one could add an error termε to the
right-hand side of equation 1 to account for systematic error.

An expression forFi can come from an analytical model (e.g.
modified Newtonian flow, oblique shock theory etc.), as is the
case in most FADS work [7, 8, 9]. The analytical model is
then “refined” using some combination of numerical simula-
tions, ground test data, and flight test data.

Alternatively, in this work,Fi is obtained directly by fitting
polynomial surfaces/curves (inM, P∞, α, andβ) to a set of CFD
data. This is a more flexible approach and is well suited to the
techniques used to solve equation 1. However, one must be
confident that the numerical simulations accurately model the
physics of the flow of interest. The approach is also limited
to small ranges ofM, P∞, α, andβ i.e. a range over which a
polynomial functional relationship will hold.

However it is obtained,Fi is generally highly non-linear. It is
also common practice to use more than four discrete pressure
measurements. So givenn pressure measurements, equation 1
becomes an overdetermined system of non-linear equations to
be solved forM, P∞, α, andβ. The system is often solved by
linearizing the equations about a point and solving the system
of perturbation equations with a least squares method [8, 9].

The use of these techniques can be problematic, particularly for
real-time calculation of airdata parameters; excessive noise or
signal drop out can lead to unconverged solutions. As a result,
fault management schemes have been developed [5]. Alterna-
tively, one can formulate the problem in a different manner,
as the authors in [7] have done with their “triples algorithm”,
which avoids non-linear regression.

In the current work, we consider the use of FADS for post-flight
analysis of data, and therefore use of non-linear regression tech-
niques is deemed acceptable. A built in MATLAB function is
used to solve equation 1 directly (the system is linearised, but
this step is taken care of by the MATLAB function rather than
the FADS algorithm).

Vehicle Geometry and Pressure Port Configuration

The vehicle geometry investigated in this work is pictured in
figure 1. This geometry is considered to be a sharp-nosed vehi-
cle (though it has a leading edge radius of 1 mm) and is simi-
lar to that studied in [6]. This configuration would be ideal for
the integration of planar scramjets or shape-transitioning scram-
jets such as the REST engine [2]. The names and locations of
pressure measurement ports are indicated on figure 1 and sum-
marised in table 1.

Numerical Simulations

The FADS system described in this paper is developed exclu-
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Figure 1: Vehicle geometry and pressure port locations.
R = ramp surface, C = chine surface, T = top, B = bottom,
R = right, L = left. Pressure ports are distributed symmetrically.
Names in brackets give the name of the pressure port on the
“opposite” side of the body (i.e. across the relevant symmetry
plane).

Port Name x (m) y (m) z (m)

P,RT1 0.150 0.000 0.016
P,RT2 0.277 0.000 0.029
P,RB1 0.150 0.000 -0.016
P,RB2 0.277 0.000 -0.029
P,CTR 0.175 0.109 0.009
P,CTL 0.175 -0.109 0.009
P,CBR 0.175 0.109 -0.009
P,CBL 0.175 -0.109 -0.009

Table 1: Pressure port locations.

sively using numerical simulations of the vehicle. As noted, this
requires that the simulations accurately capture the physics of
the real flow. For this preliminary work the focus is on demon-
strating that a well performing FADS system can be developed
using only CFD and the straight-forward surface/curve fitting
approach. Also, since there is no flight or ground test data to
compare with, CFD simulations are used to both design and test
the FADS system. In other words, at this stage of the work,
the “real” flow is not that of a notional flight experiment, but
rather is defined by a set of numerical simulations used to test
the FADS system.

All numerical simulations were carried out by Christoph Bode
at the Institute of Aerodynamics and Flow Technology of the
DLR in Braunschweig using the DLR TAU code. Meshes were
generated with the Centaur Grid Generator. All simulations are
inviscid and use an unstructured surface and volume mesh with
1193248 nodes. While inviscid simulations would not accu-
rately model results from a flight experiment, they are accept-
able for the goals of this work. Further details on the flow solver
and meshing tools are available in [10].

As noted, two sets of simulations were created; one to design
the FADS system, and a second to test it. The airdata param-
eters used as inputs for both the design and test data sets are
summarised in table 2. The parameter ranges are based on typ-
ical bounds for a sounding rocket flight experiment similar to
HyShot II. α andβ are positive in the positivez-direction and
y-direction, respectively.

Surface/Curve Fits

The FADS system is developed by performing surface/curve fits
to the design data set. This involves specifying the form ofFi;
in this workFi is defined by equation 2 as

Fi = (c1,i + c2,iα+ c3,iβ+ c4,iα2+ c5,iαβ+ c6,iβ2+

c7,iα3+ c8,iα2β+ c9,iαβ2+ c10,iβ3)P∞ (2)

M α (◦) β (◦) P∞ (Pa)

Design 7.0, 7.5, 0, 1, 0, 1, 1181
Data Set 8.0, 8.5 2, 4 2, 4

Test 7.25, 7.86, -2.7, -0.5, -3.0, 0.5, 559
Data Set 8.15, 8.39 2.1 1.5, 3.1

Table 2: CFD data sets. Design data set: 64 simulations. Test
data set: 48 simulations

with i = 1...8 (the number of pressure ports) and wherec j,i (with
j = 1...10) are functions of Mach number. The assumed func-
tional relationship forc j,i is given by equation 3 as

c j,i = A j,iM
2+B j,iM+C j,i (3)

So, for each design Mach number (M = 7.0, 7.5, 8.0, 8.5) dis-
crete values forc j,i are obtained by fittingFi to the surface pres-
sure dataPi from the design data set. A representative surface
fit is shown in figure 2. Then, the constantsA j,i, B j,i, andC j,i
are obtained by fitting equation 3 to the values ofc j,i at each
design Mach number as obtained in the previous step.

Fi is a polynomial function inM, α, β, andP∞; however, it is
easier to work with in the manner specified (i.e. by first per-
forming a surface fit inα andβ, then a fit to the constants inM),
rather than dealing withFi as a whole at once.

Figure 2: Representative surface fit forM = 8.5 and port P,CTL.

The quality of the surface fit forFi ultimately determines the ac-
curacy of the FADS algorithm. Over the parameter range of in-
terest the maximum residual is 0.002 (corresponding to∼3 Pa),
and generally it is an order of magnitude less. This should be
sufficient to obtain good airdata estimates.

Airdata Parameter Prediction

The non-linear system specified by equations 1, 2, and 3 is
solved using the Levenberg-Marquardt (LM) algorithm that is
built into MATLAB. For each data point in the test data set, the
LM algorithm is run one hundred times, each time from a ran-
domly generated start point lying within the bounds [-10,10] for
each parameter. This is not the most efficient optimisation tech-
nique, but it has proved robust thus far, resulting in a converged
solution for all test data points.

Results for the prediction ofM are shown in figure 3 versusα
and for each value ofβ. The actual value ofM is indicated by
the dashed line. The prediction ofM is very good (< ±0.05 or
±∼0.7%) forα = -0.5, 2.1 and less so (<±0.2 or±∼3.0%) for
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Figure 3: Predicted Mach number.

α = -2.7. For lowα, pressure on the ramp surfaces is essentially
independent ofβ, but for higher (absolute) values ofα this is no
longer true. This is why the error in predictedM is larger for
the highest|α| value and why there is a greater dependence on
β at the highest|α|.

The prediction ofα is shown in figure 4 versusM and for each
value ofβ. The actual value ofα is given by the dashed line.
Again, the prediction is worst for the highest|α|. The error in
predictedα also increases with increasingM, likely due as well
to the increased coupling ofα andβ. However, for all the test
data points, the error in predictedα is <±0.05◦ or±∼1.5%.

Predictions ofβ are shown in figure 5 versusM and for each
value ofα, with the actual value indicated by the dashed line.
As before, error inβ is larger for higher|α|. However, inter-
estingly,β is predicted most poorly for the lowest actual value
of β. This could result from the fact that the surface pressure
is less sensitive to changes in orientation whenβ is small. The
predicted value ofβ is within ±0.15◦ for all test data points
(equal to±∼2.0% forβ >0.5 and±∼22.0% whenβ is small).

Finally, predictions ofP∞ are shown in figure 6 versusM and
for eachα andβ. All the predictions are greater than the actual
value (indicated by the dashed line) ofP∞ = 559 Pa. The design
data set simulations were all conducted at the sameP∞, which
likely skews the functional relationship between surface pres-
sure and freestream pressure. Consistent with earlier results,
the error inP∞ is largest for higher|α|. Still, all predictions are
within ±20 Pa (or±∼4.5%) of the actual value.

The discussion thus far has essentially quantified the uncertainty
in the prediction of airdata parameters due to the quality of
the surface fit. Also important is evaluating the sensitivity of
the predictions to uncertainty in the measured surface pressure.
This can be done by perturbing each input surface pressure in-
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Figure 4: Predicted angle-of-attack.
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Figure 6: Predicted freestream pressure.

dividually and assessing the relative change in the predicted air-
data parameters. For a±5% uncertainty inPi, the uncerainty in
M, α, andP∞ is <±0.07% and inβ is<±0.3%.

The robustness of the FADS algorithm (particularly the LM al-
gorithm) to large errors in input values is yet to be determined.

Conclusions

The success of a FADS algorithm depends largely on the qual-
ity of the model used to relate surface pressure to the airdata
parameters of interest. In this work, it has been established
that fitting surfaces/curves to a set of numerical simulations is
a simple technique that can be used to generate this model and
that the resulting FADS algorithm, when tested with numerical
simulations, performs well over the chosen range of airdata pa-
rameters. To develop a FADS system for a flight vehicle the
numerical simulations used for design must accurately model
the flight conditions. Then, the surface/curve fitting techniques
described in this paper can be successfully applied to the design
of a FADS system for a hypersonic vehicle.
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